⚠️ TEMPO LIMITATO: Ottieni uno sconto del 50% sulla quota di iscrizione con il codice STATO FONDATORE. Offerta valida per 🇺🇸 RESIDENTI NEGLI STATI UNITI fino al 31 ottobre. Registrati ora
Roadmap di ricerca e sviluppo

Su cosa stiamo lavorando

Uno sguardo al nostro futuro

2022
Configurazione medica + infrastrutturale
Completato
Equipe mediche addestrate
Configurazione medica e commerciale dalla A alla Z
2023
Prime conservazioni nel mondo reale
2024
Configurazione medica + infrastrutturale
Sviluppare un agente di crioconservazione avanzato
Sviluppare procedure e protocolli - versione 2.0
2025
Raggiungere la conservazione della struttura neurale della memoria, dell'identità e della personalità secondo gli standard delle neuroscienze
2026
2027
Configurazione medica + infrastrutturale
Costruire un' infrastruttura a livello globale (!)
2028
Ottenere una conservazione reversibile (sopra sottozero)
Ottenere una conservazione reversibile a basse temperature sotto zero o addirittura criogeniche: questo è il santo graal
2029
2030

Per noi, ricerca e sviluppo significano due cose diverse:

Ricerca

Migliorare le procedure di crioconservazione umana esistenti e renderle più solide e affidabili nel breve termine.

Sviluppo

Promuovere l'intero campo della crionica a lungo termine: questi sono i progetti più ambiziosi.

Cosa abbiamo creato finora

Contenitore di trasporto a raffreddamento passivo con ghiaccio secco
Contenitore di trasporto a raffreddamento passivo con ghiaccio secco
If a patient passes away far from the long-term storage facility, their body (after cryoprotection by the medical team) needs to be transported to the facility by plane. Past patient transport boxes kept the body at a steady dry ice temperature, which is a temperature known to favor ice nucleation. Tomorrow Bio's newly developed box can gradually cool down the patient while in transit and thereby minimize ice nucleation.
Read the report

Abbiamo stuzzicato la tua curiosità?

Scopri di più su cosa offriamo e su quanto costa.

Ricerca

Questi progetti rappresentano obiettivi a lungo termine per promuovere la crioconservazione umana nel suo insieme.

ITS (Conservazione a Temperatura Intermedia)
Problema

La maggior parte dei pazienti in crioconservazione è conservata in modalità "a immersione", che è stata l'opzione standard per molti anni. Sebbene sia una tecnica ben compresa e relativamente semplice da eseguire e mantenere, presenta alcuni svantaggi. Uno dei problemi più discussi è la "fratturazione". Durante il raffreddamento fino a -196°C, anche se effettuato molto lentamente, si sviluppa uno stress termico nelle strutture più grandi, che porta alla fratturazione delle stesse. Questo comporta la necessità di ulteriori riparazioni una volta che la tecnologia per il risveglio sarà disponibile.

Soluzione

Raffreddare a una temperatura inferiore, ma ancora al di sotto della temperatura di transizione vetrosa, garantirebbe le stesse qualità protettive delle basse temperature, ma con un minore stress termico e, di conseguenza, significativamente meno fratturazione. La conservazione a temperatura intermedia si propone di fare proprio questo. Prevediamo di implementare la prima soluzione ITS per il corpo intero per i pazienti in crioconservazione.4o

Miglioramento degli agenti crioprotettivi (CPA)
Problema

La qualità degli agenti crioprotettivi è uno dei fattori più importanti che determinano la qualità complessiva della crionica.

Soluzione

Il nostro obiettivo principale è l'ottimizzazione per «situazioni reali» rispetto alle impostazioni di laboratorio. Le impostazioni di laboratorio sono generalmente ben controllate e ideali, a differenza delle situazioni del mondo reale. Gli argomenti includono l'aggiunta di dispositivi di apertura della barriera emato-encefalica, l'ottimizzazione dei tempi di trasporto, la riduzione dell'edema, l'ottimizzazione per diversi tessuti, ecc.

Warming Protocols
Problem

Warming cryopreserved tissue, especially, when larger volumes are involved (such as organs or the brain) exacerbates the complexities involved in cryopreserving the tissue. Ice nucleation and formation, for example, is much harder to control while warming from cryogenic temperatures than when cooling down to them.

Solution

Specific warming protocols and methods are required. This will first be researched on smaller animals and then increasingly on larger more complex organisms.

Re-Perfusion Protocols
Problem

To wash out CPAs and reestablish circulation the tissue needs to re-perfused and resupplied with oxygen. This brings its own set of complexities such as re-perfusion injury.

Solution

Fundamentally the concepts to do perfusion after cryopreservation needs formulated. This will first be researched on smaller animals and then increasingly on larger more complex organisms.

Concepts for Repair
Problem

Everything that is done during the cryopreservation process is done to reduce the amount of cellular and sub-cellular damage incurred due to active and passive processes started after circulatory arrest and by the procedures themselves. Nevertheless, damage is still accumulating.

Solution

In total four types of damage will need to be repaired: 1) damage from before circulatory arrest (e.g. due to diseases or general degradation), 2) damage occurring after circulatory due to ischemia (e.g. apoptotic and necrotic processes) , 3) damage from the cryopreservation itself (e.g. toxicity, ice nucleation, etc), and 4) damage from the warming and re-perfusion procedures (e.g. ice nucleation).Some of the repairs probably need to be done at sub-zero temperatures, further complicating the issue. Needless to say, significant basic research is required to understand what is required to perform these repairs.

Restoration of Life
Problem

There are preliminary ideas for restoration of life, but there is no experimental evidence yet. Significant research is needed to understand how restoration of life might work conceptually and practically.

Solution

Once warming, re-perfusion and repair is understood and done, all procedures come together in a kind of “resuscitation” similar to how cardiopulmonary resuscitation is made up of different parts leading to the “restoration of life” in the case of heart attack. Much conceptual and theoretical groundwork needs to be done before more applied research projects make sense.

Sviluppo

Stiamo lavorando per migliorare i seguenti processi per rendere la crioconservazione umana migliore e più efficiente.

Protocolli di Perfusione (Crio-protezione sul Campo per il corpo Intero)
Problema

Nella maggior parte dei casi viene utilizzato il lavaggio sul campo (cioè, senza perfusione in loco di agente crioprotettivo) o una perfusione di CPA (agente crioprotettivo) mirata al cervello. Ciò significa che il paziente rimane a una temperatura più alta alla fine delle procedure di standby, portando a una maggiore degradazione prima della vetrificazione presso la struttura di conservazione a lungo termine.

Soluzione

Il nostro obiettivo principale è l'ottimizzazione per «situazioni reali» rispetto alle impostazioni di laboratorio. Le impostazioni di laboratorio sono generalmente ben controllate e ideali, a differenza delle situazioni del mondo reale. Gli argomenti includono l'aggiunta di dispositivi di apertura della barriera emato-encefalica, l'ottimizzazione dei tempi di trasporto, la riduzione dell'edema, l'ottimizzazione per diversi tessuti, ecc.

Miglioramento degli agenti crioprotettivi (CPA)
Problema

La qualità degli agenti crioprotettivi è uno dei fattori più importanti che determinano la qualità complessiva della crionica.

Soluzione

Il nostro obiettivo principale è l'ottimizzazione per «situazioni reali» rispetto alle impostazioni di laboratorio. Le impostazioni di laboratorio sono generalmente ben controllate e ideali, a differenza delle situazioni del mondo reale. Gli argomenti includono l'aggiunta di dispositivi di apertura della barriera emato-encefalica, l'ottimizzazione dei tempi di trasporto, la riduzione dell'edema, l'ottimizzazione per diversi tessuti, ecc.

Support, Training, and Guidance for Local Teams
Problem

A good cryoprotection needs speed and skill. Speed to start cooling as soon as possible after circulatory arrest (and legally speaking after pronouncement) and skill to perform a high-quality cryoprotection. Unfortunately, member numbers even for the largest organizations are not large enough yet to allow for multiple professional teams that can be at the patients site without significant delay.

Solution

For now, a combination of local teams to allow for fast initial cooling combined with centrally positioned professional teams is the best solution. In most cases those local team are part-time and volunteer organizations. To support them as best as possible, we’re organizing trainings, offer hands-on support and advice and developing extensive digital support tools to allow good standby even in remote locations.

Cooling Technology
Problem

Cooling technology is well established in lab or hospital settings, but complexity comes from field application. Techniques likes liquid ventilation, gastric lavage or fast extracorporeal bypass (before significant cooling) all require significant skill, comprehensive training and last but not least procedures and equipment that is realistically and reproducibly usable.

Solution

Apart from implementing robust external and internal cooling (via cooled perfusate), novel cooling methods promise faster cooling rates leading to less warm ischemia.

Quality Metrics
Problem

To improve in a goal-driven fashion, comprehensive outcome metrics are required. Similar to those in medicine such as 5-year survival rate in cancer treatments or re-hospitalization and complication rate in operations.

Solution

While some quality metrics exist (extent of dehydration and ice formation measured by CT scan), significant more work is required. Establishing new and improving existing metrics is a short/mid-term focus for us.

Toxicity Reduction and Markers
Problem

Some of the ingredients of CPAs are toxic. Understanding toxicity better (by establishing markers) and reduction of toxicity are important topics to limit the amount of cellular damage that needs to be repaired.

Solution

Toxicity can be reduced for example by combining ingredients that in combination are less toxic than they would be individually.

Improvement of Cryoprotective Agents (CPA)
Problem

The quality of cryoprotective agents is one of the most crucial factors determining overall quality.

Solution

Our primary focus is the optimization for “real-world situation” as opposed to lab-settings. Lab settings are usually the well controlled and ideal, real world situations are less. Topics include the addition of blood-brain-barrier openers, optimization for transport times, edema reduction, optimization for different tissues, etc.

New CPAs
Problem

Creating new CPAs has been tried in the past by multiple organizations without much/no improvement over existing options.

Solution

Similar to improving existing CPAs, creating new ones purpose-built for non-ideal (non-lab) situations is a valuable endeavour. There is interesting and promising basic research but translating it might pose significant challenges.

Ischemia
Problem

Ischemia is one of the fundamental problems of today’s cryopreservation practise. It leads to diverse issues such as perfusion impairment, edema, pressure increase, etc.

Solution

Our research projects focus on improving the handling of non-ideal cases with different degrees of ischemia. Approaches include different CPAs, perfusion techniques,  decompressive craniotomie, etc. We also work on logistical optimization to reduce ischemia in the first place.